

CHARLES G. MESSENGER
ROME LABORATORY/ERDA
525 BROOKS RD
ROME NY 13441-4505
(315) 330-7770, FAX (315) 330-1918
messengerc@rl.af.mil

BACKGROUND

Rome Laboratory

- MIL-STD-883 Test Methods
- MIL-M-38510 Qualified Parts List (QPL) for ICs
- MIL-I-38535 Qualified Manufacturer's List (QML) for ICs
 - » Accommodates Offshore Manufacturing & PEMS
- Analytical & Environmental Test Capabilities
 - » Scanning Acoustic Microscopy (SAM)
 - » Scanning Electron Microscope (SEM)
 - » Destructive Physical Analysis
 - » 85C/85%RH, Autoclave
 - » Highly Accelerated Stress Test (HAST)
 - » Temperature Cycle

SEMICONDUCTOR PACKAGING TECHNOLOGY ASSESSMENT

- Insertion of PEMs should be accelerated in appropriate application areas
- PEMs could be readily used in non-critical, relatively benign applications
- Concerns for PEM long term storage life in extreme temperature and humidity environments need to be addressed
- A reliability physics approach should be adopted to determine root causes of failure

OVERCOMING BARRIERS

- DoD must act to overcome design conservatism in the absence of appropriate performance and reliability information
- The following projects to collect and distribute better data are recommended:
 - Define the environment in which ICs will perform
 - Characterize commercial product performance under various environmental conditions and in actual fielded use
 - Coordinate IC characterization projects and dissemination of results

COST EFFECTIVE TESTS FOR SELECTING PEMs

Attributes:

- Analog and Digital Devices
- Low Lead Count DIP & SMT Packages
- Hermetic DIP Control Packages
- Five & Six Manufacturers for Analog and Digital Respectively
- PEMs Purchased through Distribution

Problem:

- Effects of Pre-conditioning on reliability
- Appropriateness of Peck Acceleration Model
- Reliability differences: DIP vs. SMT, Analog vs. Digital, Vendor Quality

Payoff:

- Low risk decisions regarding suitability/cost effectiveness of commercial products for diverse military system applications
- Determination of value added tests for assuring PEM performance in military use conditions

ESC/JTIDS & EN-IB BEST COMMERCIAL/INDUSTRY COMPONENTS AND PRACTICES

Objective:

- Investigate differences in quality and reliability between PWAs built using commercial components and processes versus military components & processes
- Develop recommendations and guidelines for using commercial components & processes for ESC/JTIDS, Air Force, DoD

• Approach:

- Six Cell Test Matrix, Four PWAs each.
 Six iterations of testing
- Test sequence/iteration: 48Hrs (85°C /85%RH) 208 hrs temp/vib (52 cycles)
- Temperature (-54°C to 110°C) Vibration:
 6.0Grms, 38 min/cycle

FAILURE SUMMARY BY COMPONENT TYPE

	Military Process Line	Commercial Process Line
Components (Mil)	Number of Failures	Number of Failures
Active	Switch: 1	0
	PLD: 1	
Passive	Inductors: 6	Inductors: 6
	Capacitors: 2	
VTF/ SAW	VTF: 6	VTO: 1
	SAW: 5	
Components (Mil Temp)		
Active	0	Di ode: 1
Passive	Capacitor: 1	Capacitor: 1
Components (Comm.)		
Active	PLD: 1	0
Passive	0	0

MTBF CALCULATIONS ALL ACTIVE PARTS WITH MULTIPLE (2 or 3) LEVEL SUBSTITUTION

PARTS	Total	Total	Total	Failures	MTBF
	Parts 1	Hours ³	Part		
			Hours		
MI L	160	(6*208)	199,680	1	199,680
MI L- T	240	(6*208)	299,520	1	299,520
СОМ	80	(6*208)	99,840	0	² 143,654
Hermetic	160	(6*208)	199,680	1	199,680
Plastic	80	(6*208)	99.840	0	² 143 654

- 1. The part totals were calculated by multiplying sum of the part totals from Active Parts Table by 4
- 2. The MTBF for the commercial parts was calculated based on the χ^2 distribution.
- 3. The total hours is the number of iteration times the number of hours per temper ature/ vibration iteration.

DELAMINATION OF PEMS ON BOARDS ASSEMBLED USING MILITARY AND COMMERCIAL PROCESSES

MILITARY BOARD LEVEL ASSEMBLY SHOWS MORE DELAMINATION (RED) THAN COMMERCIAL ASSEMBLY, AS SHOWN BY C-SAM IMAGES. CAUSE TRACED TO ADDITIONAL ENVIRONMENTAL TEST ON MILITARY ASSEMBLY. ALL OTHER ASSEMBLY PROCESSES THE SAME.

BCIC&P, PEMs and JTIDS

- BCIC&P test data identified additional areas of concern for using PEMs on JTIDS
- BCIC&P component failure analysis identified a 20-25% increase in delamination in PEMs assembled on the military line versus commercial line
- As a result, it became evident that an overall policy for implementing PEMs on JTIDS was necessary. Contractors Best Commercial Practices would be leveraged as much as possible. Policy must address the following areas:
 - Manufacturing Parts Control Program
 - Handling & Storage of PEM devices
 - Assembly of PEMs on to next higher level assemblies

ROME LABORATORY FINDINGS ON USE OF PEMs

- Quality of vendors is variable
 - Physical analysis should be performed when evaluating vendors
- Detection of delamination in PEMs requires Acoustic Microscopy and dye penetrant tests
- Preconditioning (simulates the board soldering process) must be performed before any reliability tests
 - Ensure consistency with assembly/assembled parts, in regards to:
 - » Flux
 - » Soldering profile
 - » Cleaning process
 - Impacts reliability test results
- Board level assembly procedures must be re-evaluated when transitioning from hermetic packaging to PEMs

PERCENT DELAMINATION FOR SIX MANUFACTURERS' PRODUCT (AS RECEIVED)

CD4011 IN 14LEAD DUAL IN-LINE PACKAGES BY HARRIS, MOTOROLA, NATIONAL, PHILIPS, SGS-THOMSOM, AND TOSHIBA

PATHWAYS FOR CONTAMINATION DETECTABLE BY DYE PENETRANT TEST

DYE PENETRANT FLUORESCING ALONG POTENTIAL CONTAMINATION PATHWAYS IN A PLASTIC ENCAPSULATED MICROCIRCUIT AFTER PRE-CONDITIONING.

EFFECTS OF PRECONDITIONING ON PEMs

PRECONDITIONING (SIMULATED SOLDERING) SHOWS DELAMINATION (RED) CHANGES, AS SHOWN BY SCANNING ACOUSTIC MICROSCOPY IMAGES.

PLASTIC ENCAPSULATED MICROCIRCUIT LONG TERM STORAGE PROGRAM

Accomplishment:

- 5 yr joint RL/Army MICOM program
- 300 Parts/5 comm suppliers (gates)
- 4 diverse storage environments measured (benign, tropical, desert, arctic)

Problem:

 Commercial Plastic Encapsulated Microcircuits (PEMs) targeted for military applications (e.g. missiles) lack reliability data for long term storage applications

Payoff:

- Low Risk /Cost Effective Approach for use of Commercial Products in Harsh Dormant Storage Conditions
- Define Maintenance Concepts,
 Storage Requirements, Design
 Considerations

LONG TERM STORAGE CLIMATIC DATA AND RESULTS

Storage	Temperature *		Relative Humidity (%) *		Failures/Total	Predicted
Location	Max (°C)	Min (°C)	Maximum	Minimum	Tested	Life **
Redstone (Benign)	45	-12	52	<5	0 / 250	19.45 YRS
Yuma (Desert)	51	0	69	13	1 / 250	4.53 YRS
Eglin (Tropical)	36	-6	46	<5	1 / 250	73.0 YRS
Rome (Arctic)	32	-19	43	<5	1 / 250	139.0 YRS
Jeb Stewart (Ship)	TBD	TBD	TBD	TBD	TBD	TBD

- * Temperature and relative humidity inside container with desiccant
- ** Based on Industry Standard Acceleration Reliability Model, No failures after 1000 hours of 85C/85%RH, Ea = 0.9eV, Worst Case Environmental Conditions

- Published December 1996
- Provides information for both military program offices and manufacturers on Best Commercial Practices
- Defines an effective parts management program
- Discusses device reliability & quality test methods and their significance
- Provides reliability case studies

RAC Data Sharing Consortium (DSC)

- Compiles data on parts and systems for reliability assessments
- Types of data being collected include screening, qualification, failure analysis and field performance of components and systems
- Data repository accessible to members (http://rome.iitri.com/consortium)
- Provide data used to benchmark Best Commercial Practices
- Government membership at no cost.

DSC - Current Membership

Company	Membership Status	Company	Membership Status	Company	Membership Status
Aerospatial	Distribution	ELDEC	Steering Committee	Lockheed Martin Control Systems	Distribution
Allied Signal	Steering Committee	GEC - Marconi	Distribution	Lockheed Martin Electronics & Missiles	Distribution
AMD	Distribution	Honeywell MAVD	Distribution	Lockheed Martin Missiles & Space	Distribution
Ametek Aerospace	Distribution	Honeywell ATS	Steering Committee	Los Angeles AFB	Distribution
Autronics Corporation	Distribution	Hughes	Distribution	McDonnell Douglas	Distribution
Ball Aerospace	Paying	Hughes Avicom International	Distribution	Motorola	Distribution
BF Goodrich Aerospace	Distribution	Hughes Space & Communications	Distribution	Page Aerospace	Distribution
BFG Rosemount	Distribution	Intertechnique	Distribution	Philips	Distribution
Boeing	Steering Committee	Koito Mfg Company	Distribution	Raytheon	Distribution
Boeing - CAS	Pending	Korry Electronics	Pending	Rockwell International	Distribution
Continental Viking Laboratories	Distribution	Litton APD	Distribution	Smiths Industries	Pending
Delco Electronics	Distribution	Lockheed Martin	Pending	Sundstrand	Steering Committee
E-Systems	Distribution	Lockheed Martin Astronautics	Distribution	UTC Hamilton Standard	Distribution

DMS EFFORTS

- JTIDS Program
 - Risk Assessment of DMS Parts
 - Redesign Maintaining Board Level Form, Fit, Function
- AWACS Program
 - Assessing Use of VHDL for Board Redesign using FPGAs
- F-16 Program
 - Working With Lockheed-Martin on a Demonstration of using VHDL for Board Level Redesign
 - » VHDL Design Environment for Legecy Electronics (VDELE)
 - » Rome Lab Tools Used to Capture Design from Test Program Sets (TPS)
 - » Rome Lab Design Verification Approach Based on Fault Grading

DMS AND COTS

- COTS Doesn't Solve the DMS Problem
 - COTS have 3-5 year Life Cycle (and Getting Shorter)
 - If Design Cycle > 5 years, DMS before Production
- Recommendation
 - Use VHDL to Document Design Whether or Not COTS is used in the System
 - » System Configuration is Preserved
 - » TECHNOLOGY TRANSPARENT

CONCLUSIONS

- PEMS Can Be Viable For DoD Systems
 - Need to Be Aware of:
 - » Manufacturer's Parts Control Program
 - » How PEMS aree Handled & Stored
 - » Procedures used to Assemble PEMS on Next Level Assembly
- DMS SOlutions
 - VHDL is being used on Several Air Force Programs
 - COTS Not Necessarily the Answer
 - Need to Become TECHNOLOGY TRANSPARENT